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Part 1: Probabilistic Linear Regression
Previously, we derived maximum likelihood learning as a general way of learning machine
models.

We will now seehow the algorithms we've seen so far are special cases of this principle.



Review: Probabilistic Models
A probabilistic model is a probability distribution

This model can approximate the data distribution .
! (", #) :  ×  → [0, 1].
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If we know , we can use the conditional  for prediction.! (", #) ! (#|")

Probabilistic models may also have parameters , which we denote as$ ∈ Θ
(", #) :  ×  → [0, 1].!$



Review: Conditional Maximum Likelihood
A general approach of optimizing conditional models of the form  is by minimizing
expected KL divergence with respect to the data distribution:
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With a bit of math, we can show that the maximum likelihood objective becomes

This is the principle of conditional maximum likelihood.
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Review: Least Squares
Recall that the linear regression algorithm fits a linear model of the form
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It minimizes the mean squared error (MSE)

on a dataset .
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Is there a specific reason for us to be optimizing the mean squared error to fit our linear
model?

The answer to this can be found by looking at the algorithm from a probabilistic
perspective.



Probabilistic Least Squares
Let's derive a probabilistic algorithm by defining a class of probabilistic models and use
maximum likelihood as our objective.

1. Let's choose our model family  to be the set of Gaussian distributions of the form

Each model  is a Gaussian with a standard deviation  of one and a
mean of  that is parametrized by the parameters .
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1. We optimize the model using maximum likelihood. The log-likelihood function at a
point  equals(", #)
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Note how this is a mean squared error (MSE) objective!

Thus, minimizing MSE is equivalent to maximizing the log-likelihood of a Normal
distribution . (#; /("), -)



Algorithm: Gaussian Ordinary Least Squares
Type: Supervised learning (regression)
Model family: Linear models
Objective function: Mean squared error
Optimizer: Normal equations
Probabilistic interpretation: Conditional Gaussian fit using max-likelihood.



Extensions of Gaussian Least Squares
This is an example of how we can interpret a machine learning algorithm in a probabilistic
framework.

We will see many algorithms that have these kinds of interpretations. Here are some
simple extensions.



We can use a Gaussian model and also parametrize the standard deviation.

This is called heteroscedastic regression, and allows us to obtain confidence
intevals for our predictions.



We can can also parametrize other distributions, not just the Gaussian.

Exponential or Gamma distributions for continuous variables
Bernoulli distribution for discrete variables

This yields many new machine learning algorithms.



Part 2: Bayesian Algorithms
We can also use what we learned about Bayesian ML do interpret several algrothims that
we've seen as special cases of the Bayesian framework.



Review: The Bayesian Approach
In Bayesian statistics,  is a random variable whose value happens to be unknown.$



We formulate two models:

A likelihood model  that defines the probability of  for any fixed value
of .
A prior  that specifies us existing belief about the distribution of the random
variable .
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Together, these two models define the joint distribution

in which both the  and the parameters  are random variables.
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Review: A Posteriori Learning
Recall that in maximum a posteriori (MAP) learning, we optimize the following objective.

Note that we used the same formula as we used for maximum likelihood, except that we
have added the prior term .
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Review: Ridge Regression
Recall that the ridge regression algorithm fits a linear model
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We minimize the L2-regualrized mean squared error (MSE)

on a dataset . The term  is

called the regularizer.
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Probabilistic Ridge Regession
We can interpet ridge regression as maximum apriori (MAP) estimation as follows.



1. First, we select our model family  to be the set of Gaussian distributions of the
form (let's assume  for simplicity).
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1. We assume a Gaussian prior with mean zero and variance  on the parameters :2 $
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1. We optimize the model using the MAP approach. The objective at a point 
equals
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Thus, we see that ridge regression actually amounts to performing MAP estimation with a
Gaussian prior. The strength of the regularizer  equals .1 1/22



Algorithm: Probabilistic Ridge Least Squares
Type: Supervised learning (regression)
Model family: Linear models
Objective function: L2-regularized mean squared error
Optimizer: Normal equations
Probabilistic interpretation: Conditional Gaussian likelihood and Gaussian prior fit
using MAP.



Bayesian View on ML Algorithms
Very often, we can interpret classical ML algorithms as applications of the probabilistic or
Bayesian approaches (although we can derive them in other ways as well!)

Regularization can often be seen as applying a prior on the weights.

L1 regularization can be seen as applying a Laplace prior.

Many other algorithms will have similar interpretations.


